On the least singular value of random symmetric matrices
نویسندگان
چکیده
منابع مشابه
On the least singular value of random symmetric matrices
Let Fn be an n by n symmetric matrix whose entries are bounded by n γ for some γ > 0. Consider a randomly perturbed matrix Mn = Fn +Xn, where Xn is a random symmetric matrix whose upper diagonal entries xij , 1 ≤ i ≤ j, are iid copies of a random variable ξ. Under a very general assumption on ξ, we show that for any B > 0 there exists A > 0 such that P(σn(Mn) ≤ n−A) ≤ n−B .
متن کاملRandom Matrices: a General Approach for the Least Singular Value Problem
Let x be a complex random variable with mean zero and bounded variance. Let Nn be the random matrix of size n whose entries are iid copies of x and M be an arbitrary matrix. We give a general estimate for the least singular value of the matrix Mn := M + Nn. In various special cases, our estimate extends or refines previous known results.
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملMore about measures and Jacobians of singular random matrices
In this work are studied the Jacobians of certain singular transformations and the corresponding measures which support the jacobian computations.
متن کاملOn the singular values of random matrices
We present an approach that allows one to bound the largest and smallest singular values of an N × n random matrix with iid rows, distributed according to a measure on R that is supported in a relatively small ball and linear functionals are uniformly bounded in Lp for some p > 8, in a quantitative (non-asymptotic) fashion. Among the outcomes of this approach are optimal estimates of 1±c √ n/N ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2012
ISSN: 1083-6489
DOI: 10.1214/ejp.v17-2165